
Quantum Coding Theory (UC Berkeley CS294, Spring 2024)

Lecture 6: Linear Codes and Stabilizer Codes
February 9, 2024

Lecturer: John Wright Scribe: Pranav Trivedi

1 Linear Codes

Last time we saw the general theory of error correction, but we did not discuss how to design
error correcting codes. In particular we did not provide a systematic way of constructing
quantum error correcting codes. To that end, we will finish discussing classical linear codes
and see how they will give rise to two families of quantum error correcting codes: stabilizer
codes and CSS codes.

In the previous lecture, we saw a classical linear code C ⊆ {0, 1}n that is a linear subspace.
One way to characterize C is as the span of linearly independent basis of vectors g1, . . . , gk.
Equivalently, if we let

G =


— g1 —
— g2 —

...
— gk —


then C = {x ·G | x ∈ {0, 1}k} and G is called the generator matrix for G.

Definition 1.1. A parity check is a h ∈ {0, 1}n such that h · c = 0 (mod 2) for all c ∈ C.

The set of parity checks is denoted

C⊥ := {h | h · c = 0∀c ∈ C}.

Note that if h1, h2 ∈ C⊥ then h1 + h2 ∈ C⊥ so C⊥ is a linear subspace. Using the parity
checks, we can construct another matrix known as the parity check matrix:

H =


— h1 —
— h2 —

...
— hn−k —


where h1, h2, . . . , hn−k is a linearly independent basis of parity checks.

Claim 1.2. A linear code C is generated by a basis of k vectors if and only if C⊥ is generated
by a basis of n− k vectors.
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Proof. Fix any nonzero parity check h ∈ C⊥. Let Xi = {u ∈ {0, 1}n : h · u = i (mod 2)} for
i = 0, 1. For any nonzero x ∈ {0, 1}n such that h · x = 1 (mod 2), if v ∈ X0 then x+ v ∈ X1.
and if v ∈ X1 then x+ v ∈ X0. Hence, we can partition {0, 1}n into pairs (v, x + v) where
the first member is in X0 and the second is in X1. Therefore, h divides in {0, 1}n in half.
If we have n− k independent parity checks then the resulting space will have dimension k
since we half the number of vectors in the space with every additional independent parity
check.

For any c ∈ C we know that h · c = 0 (mod 2) by definition of h. This implies that
C ⊆ {c | h · c = 0,∀h ∈ C⊥}, but even more is true.

Fact 1.3. C = {c | h · c = 0,∀h ∈ C⊥}

Proof. The RHS can be rewritten as the set

C ′ := {c | H · c = 0} = kerH

where H is the parity check matrix. This is because any parity check can be written as a
linear combination of the n− k linearly independent basis of parity checks. Since the rank of
H is n− k, the dimension of kerH = k. So C ⊆ C ′, but they have the same finite dimension
so C = C ′.

This means we can define the code as the kernel of the parity check matrix or as the row
space of the generator matrix. Additionally,

C = {c | h · c = 0,∀h ∈ C⊥} = (C⊥)⊥

so we have that (C⊥)⊥ = C.
Since we defined a linear code to be any linear subspace of {0, 1}n then by above, C⊥ is

also a linear code and is known as the dual code of C. The generator matrix for C⊥ is H
and its parity check matrix is G.

Now for all c = (c1, . . . , cn) ∈ C we have that

H · cT =


— h1 —
— h2 —

...
— hn−k —

 ·


c1
c2
...
cn

 =


h1 · c
h2 · c
...

hn−k · c

 =


0
0
...
0


and more generally

H ·GT =


— h1 —
— h2 —

...
— hn−k —

 ·

 · · ·
g1 g2 · · · gk

· · ·

 = 0.
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This leads to the discussion of syndromes in the classical case. Notice that if we choose
any c ∈ C and add an error e ∈ E, our set of errors. Then for any parity check h, we have

h · (c+ e) = h · c+ h · e = 0 + h · e = h · e.

More generally,
H(c+ e)T = HcT +HeT = HeT

so the syndrome depends only on the error and not the codeword. This is exactly what we
saw in the the quantum setting.

In the classical setting, for E to be correctable, we need HeT1 ̸= HeT2 for all e1, e2 ∈ E.
In words, we see that distinct errors lead to distinct corruption. This is in contrast with the
quantum setting where we saw distinct errors lead to the same corruption. The weight of an
error that can be corrected depends on the (Hamming) distance between codewords.

Definition 1.4. The distance of a code C is defined as d(C) = minx̸=y∈C ∆(x, y) where ∆
is the Hamming distance. If C is linear, we have that

min
x ̸=y∈C

∆(x, y) = min
x ̸=y∈C

∆(x− y, 0) = min
x ̸=0∈C

∆(x, 0) = min
x ̸=0∈C

wt(x).

So the distance of a linear code is the minimum weight of a nonzero codeword.

Now we characterize the errors that can be corrected given the distance of a code.

Fact 1.5. Let C be a code with distance 2t+ 1. Then we can correct errors of weight ≤ t.

Proof. Suppose the transmitted codeword is c1 and y is the received codeword. Then
∆(c1, y) ≤ t. Assume for the sake of contradiction, we incorrectly decode y as a codeword
c2 ̸= c1 ∈ C. Then ∆(c2, y) ≤ ∆(c1, y). However, this leads to

∆(c1, c2) ≤ ∆(c1, y) + ∆(c2, y) ≤ 2∆(c1, y) ≤ 2t < 2t+ 1.

This contradicts is minimum distance of C.

Finally, note that if e1 ̸= e2 are errors of weight ≤ t then 0 < wt(e1 + e2) ≤ 2t so
H(e1+ e2)

T ̸= 0 since nonzero codewords have weight at least 2t+1. Therefore, HeT1 ̸= HeT2 .

2 Back to the Quantum Setting

We will now use this background on classical linear codes to develop a construction for
quantum error correcting codes.

Definition 2.1. Let Π = {Π0,Π1} be a two outcome projective measurement. The corre-
sponding binary observable is O = Π0 − Π1.

For example Z = |0⟩ ⟨0| − |1⟩ ⟨1| and X = |+⟩ ⟨+| − |−⟩ ⟨−| so the “Z basis” is {|0⟩ , |1⟩}
and the “X basis” is {|+⟩ , |−⟩}.
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Fact 2.2. If O is Hermitian matrix then O is a binary observable if and only if O2 = I.

A Hermitian matrix has real eigenvalues so if O2 = I then the eigenvalues of O are ±1.
We can write a projector Π0 for the +1 eigenvalue and Π1 for the −1 eigenvalue and obtain
our observable. For example Y 2 = I so Y is an observable.

Fact 2.3. Measure {Π0,Π1} on |ψ⟩ then we always observe 0 if and only if O |ψ⟩ = |ψ⟩.
Notice that

O |ψ⟩ = Π0 |ψ⟩ − Π1 |ψ⟩ = Π0 |ψ⟩
since we always observe 0. This implies Π0 |ψ⟩ = |ψ⟩. In other words, |ψ⟩ is a +1 eigenvector.
Similarly, we always observe 1 if and only if Π1 |ψ⟩ = − |ψ⟩ so |ψ⟩ is a −1 eigenvector.

It is easy to see that |0⟩ is a +1 eigenvector of Z and |1⟩ is a −1 eigenvector of Z. And
similarly |+⟩ is a +1 eigenvector of X and |−⟩ is a −1 eigenvector of X.

Additionally, suppose we want to measure the pairs of parities of qubits but we do
not care to measure each of the measurements individually. Notice that if ΠA = {A0, A1}
and ΠB = {B0, B1} and they correspond to observables OA and OB, respectively. Let
Π0 = A0 ⊗B0 + A1 ⊗B1 and Π1 = A0 ⊗B1 + A1 ⊗B0. Then

O = A0 ⊗B0 + A1 ⊗B1 − A0 ⊗B1 + A1 ⊗B0 = (A0 − A1)⊗ (B0 −B1) = OA ⊗OB.

Consider the 3 qubit bit flip code. If we apply ZZI to the state |ψ⟩ = a |000⟩ + b |111⟩
then we obtain |ψ⟩ so it is a +1 eigenvector. On the other hand, it is easy to check that
|ϕ⟩ = a |010⟩ + b |101⟩ is a −1 eigenvector. So the parity checks for this code are ZZI and
IZZ.

Extending this to the 9 qubit Shor code, we have the parity checks Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9

that will check for any bit flips. To check for phase flips we need to check that any two blocks of
3 qubits have the same phase so we need the checksX1X2X3X4X5X6 andX3X4X5X6X7X8X9.

For example,

X1X2X3X4X5X6(|000⟩+ (−1)a |111⟩)(|000⟩+ (−1)b |111⟩)
= (|111⟩+ (−1)a |000⟩)(|111⟩+ (−1)b |000⟩)
= (−1)(a+b)(|000⟩+ (−1)a |111⟩)(|000⟩+ (−1)b |111⟩)

=

{
+1 eigenvalue if a = b

−1 eigenvalues if a ̸= b.

Now we will generalize this idea to construct quantum codes. Given a set of parity checks
{Pi} we let C = {|ψ⟩ : Pi |ψ⟩ = |ψ⟩ ∀i}.

Fact 2.4. If Pi and Pj are parity checks for C then so is PiPj.

Proof. For all |ψ⟩ ∈ C we have

PiPj |ψ⟩ = Pi |ψ⟩ = |ψ⟩ .
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This fact implies that the set of parity checks form a subgroup of the Paulis.
We will provide a brief recap on some properties of Pauli matrices.The Pauli matrices

are observables because X2 = Y 2 = Z2 = I. We also have the relations XY = iZ, Y Z = iX,
and ZX = iY . Lastly all the Pauli matrices anti-commute because XY = −Y X,XZ =
−ZX, Y Z = −ZY .

However, products of Paulis will commute if they have an even number of locations with
differences. For example,

(X⊗X) · (Z⊗Z) = (XZ)⊗ (XZ) = (−ZX)⊗ (−ZX) = (ZX)⊗ (ZX) = (Z⊗Z) · (X⊗X).

In general, the product of n Paulis P1 ⊗ · · · ⊗Pn and Q1 ⊗ · · · ⊗Qn will always commute
if the number of locations with Pi ̸= Qi is even and will anticommute otherwise.

Definition 2.5. The n-qubit Pauli group Paulin is the set of matrices ±P1 ⊗ · · · ⊗ Pn

which are the observables and the matrices ±iP1 ⊗ · · · ⊗ Pn are the non observables. Here
Pi ∈ {I,X, Y, Z}.

This leads us to the following characterization of a stabilizer quantum code.

Definition 2.6. Let S be a subgroup of Paulin. The stabilizer code is C(S) = {|ψ⟩ : P |ψ⟩ =
|ψ⟩ ,∀P ∈ S}. We call S the stabilizer group and each P a stabilizer.

We will end with a couple facts about stabilizer codes that complete their characterization.

Fact 2.7. For C(S) to be nonempty we need

• For all P,Q ∈ S, we need PQ = QP . Notice

PQ |ψ⟩ = P |ψ⟩ = |ψ⟩ = Q |ψ⟩ = QP |ψ⟩ ,

but P and Q either commute or anticommute so by the above, it must be the case that
PQ = QP .

• S contains only ±P1⊗· · ·⊗Pn and not ±iP1⊗· · ·⊗Pn. The former has ±1 eigenvalues
and the latter is not even Hermitian.

• S does not contain −I, as no state is stabilized by −I. For a further discussion of this
point, see Lecture 8.
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